
A Survey on Detecting Domain Errors in Programs
N.R.Suganya1, R.Venkateswaran*2, K.Kathirvel#3, M.Mohankumar#4, G.Manivasagam#5

1Karpagam University

Eachanari, Coimbatore, Tamilnadu, India
*2GR Govindarajulu School of Applied Computer Technology,

Coimbatore, Tamilnadu, India

 #3,#4,#5Department of Computer Applications, Karpagam University
Eachanari, Coimbatore, Tamilnadu, India

Abstract— There are many different techniques to overcome the
problem of manual as well as automated test case generation. In
this paper we try investigating how to overcome the problems
and which way of proceeding will be a better one. For a program,
there is large number of test cases generated. The first hurdle is
the test case generation which plays a vital role in testing
software. Why is it a hurdle? Generation of test case produce
chaos for a tester as which part of a program is completed (either
each and every line is completed or some part like loops or
symbols or similar domains are completed). Hence a major
challenge in this area is to generate a relatively small set of test
cases by covering all the domains in a program. A test case
should be generated right from the requirements gathering stage
to wholly detect the domain errors. In this paper, we present an
algorithm which will help in easy way of test case generation.

Keywords— Test case generation, Domain errors, Test case
description.

I. INTRODUCTION

When a project is being started the first phase will be
requirements gathering phase. If the project is done based on
the V - model, then simultaneous process of testing can also
be carried down. So it will be much advantageous to generate
test cases at the starting stage of the project. Every domain can
be isolated based on the number of variables, loops, decisions,
links etc. When the isolation is completed test case would be
generated without any chaos. We describe a strong strategy to
detect domain errors for some other domains such as strings,
function and more. This mainly detects all the errors in
programs that guide testers to select a set of test points after
test case generation. Since the program errors can be
identified using white box testing, test cases generated will
include the test points based on the binary pattern that is 1 or 0
(ON/OFF).

II. PROBLEM DESCRIPTION

Testing software should be preplanned and carried down in
a strategic manner. Software engineers think they are angelic
since they develop the code and the testers are to just point out
errors. How much ever the cost is spent for developing, the
same ratio is also spent for testing. Testing is not only to find
faults but also to prevent software from bugs and make the
end user happy. By means of testing, the software gets
executed with the test data and the output is being examined.

Main demerit is time consumption, chaos whether a line is
completed or not, whether all domains are checked or not and
more.

This paper tries to improve test performance as follows:

 Diagram to Implement Test Case Generation.
 Test Case Description.
 Test Case Generation Algorithm.

III. PROPOSED TECHNIQUE

A. Test Case Description

 A format for test case generation is given below:

TC = {N_TC_ID, TCD, P_TC_ID, TI, TAO, TEO, FLAG}.

TC - Test Case

N_TC_ID - New Test Case ID

TCD - Test Case Description

P_TC_ID - Previous Test Case ID (if necessary)

TI - Test Input

TAO - Test Actual Output

TEO - Test Expected Output

FLAG - Red & Green

Based on this format given the test case can be generated. For
a test case to be generated, first it should be given with an id.
N_TC_ID can be used to check easily whether that particular
test case has reached the expected output or not. P_TC_ID is
applicable only if the test fails. TCD is the test case
description of how that particular domain should produce the
output. TI is the test input of how the tester should test
inputting the values. TAO is the actual output got after the
first level of testing is completed. TEO is the expected output
of how the end user requires. FLAG acts as a Test Point.

Green => Actual Output = Expected Output => (OFF)

Red => Actual Output ≠ Expected Output => (ON)

N. R. Suganya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2277 - 2279

2277

B. Diagram to Implement Test Case Generations

This diagram given below gives an idea of how the test
cases should be generated.

Consider a program. Once the program is given for testing

first thing to do is generating test cases. After generation is
completed, the test cases will be stored in a test case database.
The test cases one by one will be processed by the tester. All
the test cases will be completed and test results will be
analysed. Based on the test results the test report will be
produced of whether the expected output is achieved or not.

C. Test Case Generation Algorithm

An easy approach of generating test cases is by using
BOUT algorithm. It is nothing but it fits any of the data
structures for each domain in a program, which would be a
stack or queue or linked list or anything else. Assume n
parameters T1 to Tn in which the target is set. It indicates
different values in which particular test cases are selected to
store in a different variable take {V1 to Vn}. By using stack,
the test case elements are bound together and when one
parameter is checked it indicates stack empty and that variable
gets released. So that part gets completed. It will be an
iterative process.

Example:
Variable stack V1 to V5

 Flag

Test Case for Variable D

Target for Variable D not achieved

Hence we get V5 => D ≠ T1 & T2

After all the test case for Variable D is completed it gives
stack indication (empty or full). Once the target Tn is achieved,
the test cases for that particular target alone will be checked
with the program and after modification the same process will
be done. Hence it is an iterative process.

IV. CONCLUSIONS AND FUTURE WORK

This technique is being used with stack. As a data structure
is used it is advantageous to avoid mistakes in generating test
cases. It can be implemented. This algorithm seems to be
better when compared to other algorithms as testing can be
completed successfully. But it will be a long process and so it
is time consuming. Our future work is to implement the same
algorithm after isolating the domains by means of CFG and
implement with some other data structure which would be
time consuming.

REFERENCES
[1] Steven J.Zeil member IEEE, “Perturbation techniques for detecting

domain errors” on IEEE transactions Vol 15, No.6, June 1989.
[2] P.Thevenod Fosse, H.Waeselynck and Y.Crouzet, “An experimental

study on software structural testing : Deterministic versus random input
generation” IEEE 1991.

[3] Faten H.Afifi, Lee J.White and Steven J.Zeil, “Testing for Linear errors
in non linear computer programs” ACM transactions 1992.

[4] M.Roper, “Software testing – searching for missing link” Elsevier
Science Information and software technology pg 991-994 1999.

[5] Masayuki Hirayava, “A Selective software testing method based on
priorities assigned to functional modules” IEEE transactions 2001.

[6] D.Dvorak, R.Ragmussen, G.Reeves and A.Sacks, “Software
Architecture Themes in JDL’s Mission Data System” in proceeding of
IEEE Aerospace Conference Mar 2000.

[7] Sudheendra Hongal and Monica S.Lam, “Tracking down software bugs
using automatic anamoly detection” in ACM transactions ICSE may
2002.

[8] Nasha Miran, “Data Generation for Path Testing Software Quality”
Journal Kluwer academic publisher’s pg 121-136, 2004.

D

b

a

s

S

Rule 1

Rule 2

Rule 3

Rule 4

Rule 5

Rule 4

Rule 5

Program

Generate
Test
Cases

Test
Cases

Process
Test
Case

Analyse
Test
Results

Run the
Program

Test
Report Executio

n Results

V5

V4

V3

V2

V1

T2

T1

T1

T2

T4

T5

T3

N. R. Suganya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2277 - 2279

2278

N.R.Suganya is pursuing her Ph.D at Karpagam University. She
holds her MCA degree from Anna University, Chennai. Also
completed her B.Sc Computer Science degree from Bharathiar
University, Coimbatore. Being her research area is in software
testing she also has interest on security oriented networks, Digital
Processing and Software Engineering. She was working as a software
engineer in UST Global for 2 years. And recently entered into
academics. Organized workshops, FDPs, attended International
conferences and published an International journal paper on
Networks.

R.Venkateswaran is pursuing his Ph.D in Karpagam University. He
Holds his M.Phil and M.C.A degree too. He is working as a assistant
professor at GR Govindarajulu School of Applied Computer
Technology, Coimbatore. He was working with Nehru College for
past 5 years. His area of interest is Networking. He has published
many international journals and has presented papers in Conferences.
Also attended many FDP’s.

K.Kathirvel, did his M.Phil from Karpagam University, Coimbatore.
His area of research was Software Engineering. His professional
qualifications include M.Sc from Bharathiar University. He was
working as a software engineer in UST Global for 1 year. He has a
working experience of 3 years in Karpagam University as Lecturer.

M.Mohankumar, did his M.Phil from Karpagam University,
Coimbatore. His area of research was Software Engineering. His
professional qualifications include MCA from Bharathidasan
University. He has a working experience of 21/2 years in Palpap
Software International Ltd as a test Engineer. He has a working
experience of 3 years in Karpagam University as Lecture. Organized
workshops, FDP,guest lecturing he was interested.

G.Manivasagam, did his M.Phil from Karpagam University,
Coimbatore. His area of research was Software Engineering. His
professional qualifications include MCA from Bharathiar University.
He has a working experience of 21/2 years in Karpagam University as
Lecturer.

N. R. Suganya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2277 - 2279

2279

